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Abstract. We propose a computational approach based on the level set method to solve shape
optimization problems where the objective function is dependent on the Laplace–Dirichlet eigenvalues
of the domain. The approach is applied to the parameterized problem of minimizing the convex
combination of sequential Laplace–Dirichlet eigenvalues, λk and λk+1. We show that as a function
of the combination parameter, the optimal value is nondecreasing, Lipschitz continuous, and concave
and that the minimizing set is upper hemicontinuous. The domains which minimize the first few
Laplace–Dirichlet eigenvalues are known analytically or have been studied computationally, and it
is known that the optimal solution for some values of k have multiple connected components. Our
computations reproduce these previous results for the appropriate parameter values and extend these
results, effectively capturing intermediate topology changes. The results are also compared to values
obtained analytically for rectangular and elliptical shapes and to values for domains with nearly
circular boundaries.
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1. Introduction. Since Lord Rayleigh conjectured that the disk should mini-
mize the first Laplace–Dirichlet eigenvalue among all shapes of equal area more than
a century ago [45], eigenvalue optimization problems have been an active research
topic with applications in various areas including mechanical vibration [18, 19, 17],
electromagnetic cavities [1], photonic crystals [20, 21, 31, 24, 42, 41], and popula-
tion dynamics [30, 46, 27]. Furthermore, eigenvalue optimization problems can be
viewed as finding domains (or spatially dependent operator coefficients) which satu-
rate isoperimetric (i.e., universal) inequalities and thus have significant mathematical
interest in their own right. Progress has been made on such problems in recent years
due to both theoretical and computational developments in optimization methods,
variational analysis, and methods for modeling and evolving free interfaces. Excellent
surveys on extremum problems for eigenvalues can be found in [25, 4].

In this work, we develop a numerical method for computing optimal domains
for shape optimization problems where the objective function is dependent on the
Laplace–Dirichlet eigenvalues of the domain, i.e., shape optimization problems of the
general form

(1.1) min
Ω⊂Rd

J(|Ω|,Λ(Ω)),
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Table 1

A summary of results for extremizers of functions of Laplace–Dirichlet eigenvalues. See section 1.

Problem Results
min|Ω|=1 λk k = 1: Minimizer is a ball (Rayleigh–Faber–Krahn); see [25, 4]

k = 2: Minimizer is union of 2 balls of equal volume (Krahn–Szegö);
see [25, 4]

k = 3: Minimizer is connected and a ball is a local minimizer [49]
k = 4: Candidate minimizer is union of two balls with different

volumes; see [25]
k ≥ 5: Numerical results: k = 3 : 10 [43] and k = 5 : 15 [3]

min|Ω|=1 (1− γ)λk + γλk+1 For k = 1, only γ = 1 is disconnected [49]
k = 1 and γ ∈ [0, 1]: numerical results [49]
k = 1 : 14 and γ = 1

2
: numerical results [2]

k = 1 : 5 and γ ∈ [0, 1], present work

maxΩ
λk
λ1

k = 2: Maximizer is a ball (Ashbaugh–Benguria); see [5]

Numerical results: k = 3, [35]; k = 3 : 13, [40]; k = 3 : 14, [2]

where Λ(Ω) = {λk(Ω)}∞k=1 are the Laplace–Dirichlet eigenvalues of Ω. (See section 2
for a mathematical formulation.) In our method, the domain is represented using a
level set function, which is advantageous when the topology of the optimal domain
in (1.1) is unknown. We implement the method in two dimensions (d = 2) and use
it to study a parameterized objective function, where the topology of the optimal
domain is known to depend on the parameter. In particular, we consider the γ-
parameterized shape optimization problem of minimizing the convex combination of
sequential Laplace–Dirichlet eigenvalues,

(1.2) min
|Ω|=1

(1 − γ)λk(Ω) + γ λk+1(Ω) for k ∈ N and γ ∈ [0, 1].

Here, γ and k are fixed parameters and we minimize over the domain Ω. Our compu-
tational results extend and unify several existing results in this area. In what follows,
we review some results on eigenvalue optimization problems with an emphasis on
computational developments. A summary of this discussion can be found in Table 1.

Related work. It is known that among all open, d-dimensional domains of equal
volume, the minimizer of λ1(Ω) is a ball (Faber–Krahn inequality) and the minimizer
of λ2(Ω) is the union of two balls of equal size (Krahn–Szegö inequality). For k ≥ 3,
considerably less is known about the minimizer of λk(Ω). Among quasi-open domains
of fixed volume, a minimizer can be shown to exist and have finite perimeter [8, 37],
and some connectedness properties are understood [25, 49]. For dimension d = 2,
it has been conjectured that the two-dimensional, open domain with fixed volume
which minimizes λ3(Ω) is a ball [25]. The minimizer of λ4(Ω) is conjectured to be the
disjoint union of two balls with radii which have ratio j0,1/j1,1, where j·,· are zeros
of Bessel functions. (See [25, open problem 9].) For dimension d = 2, candidates for
minimizers for k ≤ 15 have been proposed based on extensive numerical simulations.1

Perhaps the first computational contribution to this area was [49], where the range
of the first two Laplace–Dirichlet eigenvalues (λ1 (Ω) , λ2 (Ω)) for a planar domain Ω
of unit area was explored. The boundary of the range consists of two rays and a curve
connecting their endpoints which was determined numerically by studying the convex

1Hereafter, when discussing computational results for problems of the form (1.1), the term mini-
mizer refers to domains which approximately minimize the discrete version of the objective function.
Usage should be clear from context.
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combination of the first two eigenvalues. Furthermore, the minimum of λj(Ω), for
j = 1 : 17 was found when Ω is a union of disjoint circular discs or a union of disjoint
rectangles.2 It was also shown that the minimizing domain is connected for λ3 and
the disc is a local minimum.

In [43], the shape optimization problems of minimizing the first 10 Laplace–
Dirichlet eigenvalues were studied. A level set approach was used to represent the
domain and a relaxed formulation of the Laplace–Dirichlet problem was used to com-
pute the eigenvalues. In [3], the problems of minimizing Laplace–Dirichlet eigenvalues
and maximizing Laplace–Neumann eigenvalues were studied. A meshless method was
used to compute eigenvalues and eigenfunctions with high accuracy and the bound-
ary of the planar, star-shaped domains were parameterized using Fourier coefficients.
The results for the minimal Laplace–Dirichlet eigenvalues were similar to those in
[43], except the study was extended to include the 11th to 15th eigenvalues and a sig-
nificantly improved domain was found for the 7th eigenvalue. The optimal domains
are symmetric except for the minimizer for the 13th Laplace–Dirichlet eigenvalue.
This result implies that it is not possible to establish general symmetry properties of
extremal domains. For the Laplace–Neumann problem, they found the maximizing
domains for the first 10 nontrivial eigenvalues.

The related problem of finding the d-dimensional, open domain which maximizes
the ratio of the nth to first Laplace–Dirichlet eigenvalues has also been studied. The
maximizer of λ2(Ω)/λ1(Ω) was conjectured by Payne, Pólya, and Weinberger to be
a ball [44], which was later proved by Ashbaugh and Benguria [5]. In [35], exten-
sive numerical experiments were conducted on various parameterized two-dimensional
domains to determine the range of the ratios of the first three Laplace–Dirichlet
eigenvalues. A peanut-shaped region was found to be a maximizer for the ratio
λ3(Ω)/λ1(Ω).

In [40], two shape optimization problems were studied: the ratio of the nth to first
Laplace–Dirichlet eigenvalues and the ratio of the nth eigenvalue gap to first eigen-
value. The eigenvalues were computed using the method of particular solutions, and
the boundary was parameterized using Fourier-cosine coefficients. A quasi-Newton
method was used to improve the convergence of the optimization problem. The opti-
mal values and shapes for n ≤ 13 are presented. It was found that for both spectral
functions and each n, the nth eigenvalue of the optimal shape has multiplicity of at
least two.

In [2], the mean of sequential eigenvalues and ratios of Laplace–Dirichlet eigen-
values are studied. Some results regarding the connectedness of the domains are also
derived. The eigenvalues are computed using a meshless method and the regions are
parameterized using a Fourier series.

Other ratios, sums, and sums of inverses of Laplace–Dirichlet and Laplace–
Neumann eigenvalues have also been studied; see [25, 4]. Recently, a numerical ap-
proach based on a B-spline parametrization of the domain boundary was used to study
eigenvalue optimization problems [36].

By studying convex combinations of Laplace–Dirichlet eigenvalues, the present
work both supports and extends several of these previous results. Additionally, con-
sidering the dependence of the optimal solution to (1.2) as a function of the parameter
γ reveals an interesting shape evolution for which we can prove several results.

2Throughout, we use the (MATLAB) notation 1 : n to indicate the sequnce of numbers {j}nj=1
and α : Δ : β to indicate the sequence of numbers α, α+Δ, α+ 2Δ, . . . , β.
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Outline. This paper is organized as follows. In section 2, we review the defini-
tion and some properties of Laplace–Dirichlet eigenvalues and give some analytical
results for the shape optimization problems (1.1) and (1.2). In section 3, we consider
(1.2) for domains consisting of rectangles and ellipses, where the problem greatly sim-
plifies. These results are used for comparison in subsequent sections. In section 4,
a robust computational method is introduced for solving problems of the form (1.1).
In section 5, we apply the computational method to study the convex combination of
sequential Laplace–Dirichlet eigenvalues (1.2). Finally, we conclude in section 6 with
a discussion of results and some further directions.

2. Mathematical preliminaries and formulation.

2.1. Properties of Laplace–Dirichlet eigenvalues. General references for
Laplace–Dirichlet eigenvalues can be found in [16, 25, 32]. In this paper we generally
assume Ω ⊂ R

d to be an open, bounded domain with Lipschitz boundary Γ := ∂Ω.
Let {(λk(Ω), ψk(x; Ω)}∞k=1 denote the eigenpairs of the Laplace–Dirichlet operator for
the domain Ω (listed with multiplicity), satisfying

−Δψ(x) = λψ(x) x ∈ Ω,(2.1)

ψ(x) = 0 x ∈ Γ := ∂Ω.

The eigenvalues λk(Ω) are characterized by the Courant–Fischer formulation

(2.2) λk(Ω) = min
Ek⊂H1

0
(Ω)

subspace of dim k

max
ψ∈Ek,ψ �=0

∫
Ω |∇ψ|2dΩ∫
Ω
ψ2dΩ

,

where Ek is in general a k-dimensional subspace of H1(Ω) and at the minimizer,
Ek = span({ψj(x; Ω)}kj=1). The ratio in 2.2 is referred to as the Rayleigh quotient.

We denote the set of all eigenvalues of a domain Ω by Λ(Ω) = {λk(Ω)}∞k=1. The
eigenpairs satisfy the following properties:

1. For fixed Ω, λk(Ω) ↑ ∞ as k ↑ ∞.
2. The eigenvalues are invariant to rigid transformations of the domain, i.e.,

rotations and translations.
3. Eigenvalues λk(Ω) are monotone with respect to Ω, i.e., Ω ⊆ Ω′ ⇒ λk(Ω

′) ≤
λk(Ω).

4. For any Ω ⊂ R
d and t > 0, we define tΩ := {tx : x ∈ Ω ⊂ R

d}. The
Laplace–Dirichlet eigenvalues satisfy the homothety property

(2.3) λk(tΩ) = t−2λk(Ω),

and thus the quantity |Ω| 2dλ(Ω) is invariant to dilations of Ω.
5. If Ω is the disjoint union of two domains, Ω = Ω1 ∪Ω2, then Λ(Ω) = Λ(Ω1)∪

Λ(Ω2).
6. Let D ⊂ R

2 be a fixed compact set and Ωj ⊂ D a sequence of open, sim-
ply connected domains which converge in the Hausdorff distance to Ω ⊂
D. Then λk(Ωj) → λk(Ω). Furthermore, if Ωj ⊂ R

2, j = 1, 2 are two
star-shaped domains defined by two positive polar functions fj , i.e., Ωj =
{(r, θ) : r < fj(θ), θ ∈ [0, 2π]}, then

|λk(Ω1)− λk(Ω2)| ≤ C‖f1 − f2‖L∞([0,2π]),

where C is a constant.
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7. If ∂Ω is Lipschitz, then ψ ∈ H1(Ω) ∩ C(Ω) ∩ C∞(Ω).
8. The eigenspace corresponding to λ1(Ω) is one-dimensional and the eigenfunc-

tion ψ1(x; Ω) does not change sign on Ω.

2.2. Shape optimization for Laplace–Dirichlet eigenvalue problems. In
this paper, we study shape optimization problems of the general form (1.1). Recent
results show that if J(Λ(Ω)) is a nondecreasing and Lipschitz continuous function of
the eigenvalues, then a minimizer exists among quasi-open domains of fixed volume
and every solution has finite perimeter [8, 37]. For a parameterized optimization
function, as in (1.2), the optimal value and minimizing set, when viewed as a function
of the parameter, inherit some continuity properties from the objective function. We
make these statements precise for (1.2). Recall that a set-valued function Γ: A → B
is upper hemicontinuous at a point a ∈ A if for all sequences {an}n such that an → a
and all sequences {bn}n such that bn ∈ Γ(an), there exists a b ∈ Γ(a) such that
bn → b.

Proposition 1. For the admissible set, A := {Ω: Ω quasi-open and |Ω| ≤ 1},
and objective function, Ck,γ(Ω) := (1 − γ)λk(Ω) + γ λk+1(Ω), define

C�k,γ = inf
Ω∈A

Ck,γ(Ω) and Ω̂k,γ =
{
Ω ∈ A : Ck,γ(Ω) = C�k,γ

}
.

For each k ∈ N, the following statements hold:
1. For each γ ∈ [0, 1], C�k,γ exists and Ω̂k,γ is a nonempty and closed set. Fur-

thermore, every Ω ∈ Ω̂k,γ has finite perimeter.
2. The optimal value, C�k,γ , is a nondecreasing, Lipschitz continuous, and con-

cave function of γ.
3. As a set-valued function of γ, Ω̂k,γ is upper hemicontinuous.

Proof. (1) Follows from the results of [8, 37].
(2) Let 0 ≤ β < α ≤ 1 and let Ωα ∈ Ω̂k,α. Assume C�k,β > C�k,α. Then

C�k,β > Ck,α(Ωα) ≥ Ck,β(Ωα) since Ck,γ is nondecreasing in γ. But this contradicts
the optimality of C�k,β . Thus, C

�
k,γ is nondecreasing in γ. We compute

C�k,β ≤ Ck,β(Ωα)

= Ck,α(Ωα)− ((1 − α)λk(Ωα) + αλk+1(Ωα)) + ((1− β)λk(Ωα) + βλk+1(Ωα))

= C�k,α + (β − α) [λk+1(Ωα)− λk(Ωα)] ,

which shows that C�k,γ is Lipschitz continuous with constant λk+1(Ωα) − λk(Ωα).
Let γα = (1 − α)γ1 + αγ2 for α ∈ (0, 1) and note that for any Ω, Ck,γα(Ω) = (1 −
α)Ck,γ1 (Ω)+αCk,γ2(Ω). Let Ωα ∈ Ω̂k,γα , i.e., Ck,γα(Ωα) = C�k,γα and suppose C�k,γα <
(1− α)C�k,γ1 + αC�k,γ2 . Then

Ck,γ2(Ωα) =
1

α
Ck,γα(Ωα)−

1− α

α
Ck,γ1(Ωα)

≤ 1

α
Ck,γα(Ωα)−

1− α

α
C�k,γ1

<
1− α

α
C�k,γ1 + C�k,γ2 −

1− α

α
C�k,γ1

= C�k,γ2 ,

which contradicts the optimality of C�k,γ2 . This shows that C
�
k,γ is a concave function

of γ.
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(3) LetM > 0 be such that diam(Ω) ≤M for all Ω ∈ Ω̂k,γ , γ ∈ [0, 1]. Let γn → γ

and Ωn ∈ Ω̂k,γn be sequences. Since the diameter of Ωn is uniformly bounded, there
exists a domain Ω ∈ A and a subsequence (which we denote by Ωn) such that Ωn → Ω
in the sense of weak γ-convergence [9]. Suppose Ω /∈ Ω̂k,γ , i.e., there exists Ω′ such
that Ck,γ(Ω

′) < Ck,γ(Ω). Using the continuity of Ck,γ(Ω) in γ and Ω, we compute
limn↑∞ Ck,γn(Ω

′) = Ck,γ(Ω
′) < Ck,γ(Ω) = limn↑∞ Ck,γn(Ωn). For sufficiently large n,

this implies Ck,γn(Ω
′) < Ck,γn(Ωn), contradicting the optimality of Ωn. Thus, Ω̂k,γ is

upper hemicontinuous in γ.
Using the homothety property of Laplace–Dirichlet eigenvalues (2.3), (1.2) is

equivalent to the problem

(2.4) min
Ω⊂Rd

Ck,γ(Ω) := (1− γ) |Ω| 2d λk(Ω) + γ |Ω| 2d λk+1(Ω),

which is of the form (1.1). Computationally, it is more convenient to consider this
unconstrained problem, rather than (1.2).

2.3. Shape deformations. Gradient-based optimization methods for the solu-
tion of (1.1) require the variation of J(|Ω|,Λ(Ω)) with respect to a deformation of the
domain Ω, as given in the following proposition.

Proposition 2. Let J = J(|Ω|,Λ(Ω)) and Ω be a domain for which all eigen-
values λk for which J has nontrivial dependence are simple. Then the variation of
J(|Ω|,Λ(Ω)) with respect to a deformation of the domain Ω by a velocity field V is
given by

δJ(|Ω|,Λ(Ω)) ·V =
∂J

∂|Ω|δ|Ω| ·V +

∞∑
k=1

∂J

∂λk
δλk(Ω) ·V

=

〈
∂J

∂|Ω| −
∞∑
k=1

∂J

∂λk
|∂nψk|2, Vn

〉
L2(Γ)

,

where Vn = (V · n̂), ∂n = n̂ · ∇, n̂ is the outward unit normal, and the eigenfunctions
are assumed to be normalized, ‖ψk‖L2(Ω) = 1.

Proof. Let λ(Ω) be a simple Laplace–Dirichlet eigenvalue satisfying (2.1) with
corresponding eigenfunction ψ. Hadamard’s eigenvalue variation formula [25, 26, 23]
states that the variation of λ(Ω) with respect to a deformation of the domain Ω by a
velocity field V is given by

δλ(Ω) ·V =
− ∫

Γ |∂nψ|2(V · n̂)dΓ∫
Ω ψ

2dΩ
.

Noting that δ|Ω| ·V =
∫
Γ
(V · n̂)dΓ, the result follows from the chain rule.

The following proposition gives the variation of Ck,γ(Ω), as defined in (2.4), with
respect to a deformation in the domain Ω in two dimensions, i.e., d = 2.

Corollary 3. The variation of Ck,γ(Ω) := (1 − γ) |Ω| λk (Ω) + γ |Ω| λk+1 (Ω)
with respect to a perturbation in the domain Ω by a velocity field V is given by

δCk,γ(Ω)·V = [(1− γ)λk + γλk+1] δ|Ω|·V+ |Ω| [(1− γ)δλk(Ω) ·V + γδλk+1(Ω) ·V] ,

where δ|Ω| ·V =
∫
Γ
(V · n̂)dΓ.
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Fig. 3.1. (left) Eigenvalues λmn for the rectangular domain Rc := [0,
√
c] × [0, 1√

c
] for c > 1

as defined in (3.1). (right) Eigenvalues λ1 : λ6 for the rectangular domain Rc for c > 1 relabeled
and recolored by magnitude. Also plotted are the parameterized optimal values f�

k,γ for k = 1 : 5

and γ ∈ [0, 1]. See section 3.1.

3. Convex combinations of sequential eigenvalues for two parameter-
ized domains. In this section, we study the convex combination of sequential Laplace–
Dirichlet eigenvalues over two classes of one-parameter domains: rectangles and el-
lipses of fixed area. In both cases, the shape optimization problem (1.2) greatly
simplifies. The results obtained are used for comparison in section 5.

3.1. Convex combinations of sequential eigenvalues for rectangles. Con-
sider the one-parameter family of unit-area rectangular domains Rc with length

√
c

and width 1√
c
. Without loss of generality, we assume the aspect ratio c of the rect-

angle Rc is greater than one, i.e., c > 1. The Laplace–Dirichlet eigenvalues of the
rectangle Rc are given by

(3.1) λm,n = π2

(
m2

c
+ cn2

)
, m, n = 1, 2, 3, 4, . . . .

In Figure 3.1(left), we plot the eigenvalues λm,n for rectangles Rc with varying aspect
ratio, c. We relabel the eigenvalues λk according to their magnitude, i.e., 0 < λ1 <
λ2 ≤ λ3 ≤ · · · . The relabeled eigenvalues are plotted in Figure 3.1(right). The first
six eigenvalues may be expressed as follows:

λ1 = λ1,1 = π2

(
1

c
+ c

)
,

λ2 = λ2,1 = π2

(
4

c
+ c

)
,

λ3 =

⎧⎨
⎩
λ1,2 = π2

(
1
c + 4c

)
, c ≤

√
8
3 ,

λ3,1 = π2
(
9
c + c

)
, c ≥

√
8
3 ,

λ4 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ2,2 = π2
(
4
c + 4c

)
, c ≤

√
5
3 ,

λ3,1 = π2
(
9
c + c

)
,

√
5
3 ≤ c ≤

√
8
3 ,

λ1,2 = π2
(
1
c + 4c

)
,

√
8
3 ≤ c ≤ √

5,

λ4,1 = π2
(
16
c + c

)
, c ≥ √

5,
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λ5 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λ3,1 = π2
(
9
c + c

)
, c ≤

√
5
3 ,

λ2,2 = π2
(
4
c + 4c

)
,

√
5
3 ≤ c ≤ 2,

λ4,1 = π2
(
16
c + c

)
, 2 ≤ c ≤ √

5,

λ1,2 = π2
(
1
c + 4c

)
,

√
5 ≤ c ≤ 2

√
2,

λ5,1 = π2
(
25
c + c

)
, c ≥ 2

√
2,

λ6 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1,3 = π2
(
1
c + 9c

)
, c ≤

√
8
5 ,

λ3,2 = π2
(
9
c + 4c

)
,

√
8
5 ≤ c ≤

√
7
3 ,

λ4,1 = π2
(
16
c + c

)
,

√
7
3 ≤ c ≤ 2,

λ2,2 = π2
(
4
c + 4c

)
, 2 ≤ c ≤ √

7,

λ5,1 = π2
(
25
c + c

)
,

√
7 ≤ c ≤ 2

√
2,

λ1,2 = π2
(
1
c + 4c

)
, 2

√
2 ≤ c ≤

√
35
3 ,

λ6,1 = π2
(
36
c + c

)
, c ≥

√
35
3 .

Similar expressions may be obtained for larger eigenvalues λk(Rc), however, as can
be seen from Figure 3.1(right), the number of points for which λk(Rc) is nonsmooth
increases with k.

For γ ∈ [0, 1], define the minimal convex combination of sequential eigenvalues
λk and λk+1 over the set of all c-parameterized rectangles, i.e., {Rc : c ≥ 1}, by
(3.2) c�k,γ = argmin

c≥1
fk,γ(c) := (1− γ)λk(Rc) + γ λk+1(Rc) and f�k,γ = f(c�k,γ).

For example,

f1,γ(c) = (1− γ)λ1(Rc) + γλ2(Rc) = π2

(
c+

1

c
(1 + 3γ)

)
.

Thus f1,γ(c) reaches a minimum for c∗1,γ =
√
1 + 3γ with value f�1,γ = 2π2

√
1 + 3γ.

The minimizing sets c�k,γ and minimal values f�k,γ for k = 1 : 5 are presented in Table 2
and Figure 3.2. The numerical values of f�k,γ for k = 1 : 5 and γ = 0 : .1 : 1 are given
in Table 3 (top). We observe the following:

1. For each k ∈ N and γ ∈ [0, 1], a minimizer of fk,γ(c), as defined in (3.2),
exists but is not necessarily unique. That is, more than one value of c may
attain the minimal value. Uniqueness can fail at a single point such as for
k = 2 at γ = 4

9 or over an interval such as for k = 5 and γ = [ 12 , 1].
2. An argument similar to that for Proposition 1 shows that as a function of

the parameter γ, the minimal objective function value f�k,γ is nondecreasing,
Lipschitz continuous, and concave and that the minimizing set c�k,γ is up-
per hemicontinuous. From the form of the optimizers in Table 2, one may
additionally verify that the minimum f�k,γ is a piecewise smooth function of
γ.

3. For fixed k ∈ N, if the optimal value f�k,γ is constant on the interval [1−δ, 1] for
some δ > 0, then λk+1(Rc�

k,1
) = λk(Rc�

k,1
), i.e., the multiplicity of λk+1(Rc�

k,1
)

is greater than one. This is observed for k = 2 : 5.

3.2. Convex combinations of sequential eigenvalues for ellipses. Any
ellipse can be represented in Cartesian coordinates as the set of points (x, y) ∈ R

2
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Table 2

The first four columns display k, the range of γ, the optimizers c�k,γ, and optimal values f�
k,γ for

k = 1 : 5 as defined in (3.2). The fifth column gives the multiplicity of λk+1(Rc�
k,γ

). See Figure 3.2

and section 3.1.

k γ c�k,γ f�
k,γ Mult. of λk+1(Rc�

k,γ
)

1 [0, 1]
√
1 + 3γ 2π2

√
1 + 3γ 1

[0, 4
9
]

√
4 + 5γ 2π2

√
4 + 5γ 1

2 [ 4
9
, 1
2
]

√
4−3γ
1+3γ

2π2
√

(4 − 3γ)(1 + 3γ) 1

[ 1
2
, 1] 1 5π2 2

[0, 35
6
√

6
− 5

3
] 1 π2(5 + 3γ) 1

3 [ 35
6
√

6
− 5

3
, 1]

√
8
3

35π2√
24

2

[0, 19
39

]
√

8
3

π2√
24

(35 + 9γ) 1

4 [ 19
39

, 11
15

]
√

9−5γ
1+3γ

2π2
√

(9 − 5γ)(1 + 3γ) 1

[ 11
15

, 1]
√

5
3

32π2√
15

2

[0, 2
√

15
√

1769
4065

+ 96
271

]
√

5
3

π2( 32√
15

+
√
15γ) 1

5 [ 2
√
15

√
1769

4065
+ 96

271
, 1
2
]

√
9−8γ
1+8γ

2π2
√

(9 − 8γ)(1 + 8γ) 1

[ 1
2
, 1] {1, 2} 10π2 2

such that

x2

α2
+
y2

β2
≤ 1, where α > β > 0.

Here, α and β are referred to as the major and minor radii, respectively. The foci of the
ellipse are x = ±c = ±

√
α2 − β2, the eccentricity is ε = c

α , and the area is A = παβ.
For fixed area, the set of all ellipses can be parameterized by the eccentricity. For
ε ∈ [0, 1), we denote by Eε the ellipse of unit area with eccentricity ε.

The solution to the Laplace–Dirichlet eigenproblem on an ellipse is described in,
e.g., [47, 48], and is briefly summarized here. In elliptical coordinates (consisting of
confocal ellipse and hyperbolae), the Laplace–Dirichlet equations on an ellipse are sep-
arable. In the “angular” coordinate (parameterizing the confocal ellipses), the arising
equation is called the Mathieu equation, and in the “radial” coordinate (parameter-
izing the confocal hyperbolae), the arising equation is called the modified Mathieu
equation. The eigenvalues are precisely the values for which simultaneously (1) the
solution to the Mathieu equation is periodic and (2) the solution to the modified
Mathieu equation vanishes on the boundary of the ellipse. To obtain the eigenvalues
numerically, we use the MATLAB implementation of the Mathieu equation described
in [15]. Eigenvalues computed in this manner are naturally labeled λm,n, where
m = 0, 1, 2, . . . are the number of zeros of the solution to the Mathieu equation and
n = 1, 2, . . . is the number of zeros of the solution to the modified Mathieu equation.
We then relabel the eigenvalues λk for k = 1, 2, . . . according to their magnitude. In
Figure 3.3, we plot the first six eigenvalues of the ellipse Eε for varying eccentricity,
ε ∈ [0, 1). Note that as in Figure 3.1, labeling the eigenvalues according to their
magnitude introduces nondifferentiability in λk.

For ε ∈ [0, 1], define the minimal convex combination of sequential eigenvalues
over {Eε : ε ∈ [0, 1]},
(3.3) ε�k,γ = argmin

ε
gk,γ(ε) := (1 − γ)λk(Eε) + γ λk+1(Eε) and g�k,γ = g(ε�k,γ).
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Fig. 3.2. The optimal values f�
k,γ for k = 1 : 5 and γ ∈ [0, 1] as defined in (3.2) are plotted

in blue. For each point indicated with an asterisk, the corresponding optimizing rectangle is also
presented. For k = 2 and 5, additional rectangles are given so that each solution interval in Table 2
is represented. Isolated values γ such that the optimizer is not unique are indicated by the green

asterisks (k = 2, γ = 4
9
; k = 3 at γ = 35

6
√

6
− 5

3
; and k = 5,γ = 2

√
15

√
1769

4065
+ 96

271
). For k = 5 the

solution is not unique on the interval γ = [ 1
2
, 1]. Here minimal values are indicated by red asterisks

and both minimizing rectangles are presented in red. See Table 2 and section 3.1.

The optimizers ε�k,γ and values g�k,γ for k = 1 : 5 and γ ∈ [0, 1] are presented in
Figures 3.3 and 3.4. The numerical values of g�k,γ for k = 1 : 5 and γ = 0 : .1 : 1 are
given in Table 3 (middle). We observe the following:

1. For each k ∈ N and γ ∈ [0, 1], the minimizer of gk,γ(ε) as defined in (3.3)
exists but is not necessarily unique. Uniqueness fails for k = 2 at γ ≈ 0.14
and for k = 3 at γ ≈ 0.47.

2. An argument similar to that for Proposition 1 shows that as a function of
the parameter γ, the minimal objective function value g�k,γ is nondecreasing,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MINIMAL COMBINATIONS OF DIRICHLET EIGENVALUES B741

0 0.2 0.4 0.6 0.8
20

40

60

80

100

λ
1

λ
2

λ
3

λ
4

λ
5

λ
6

eccentricity2

ei
ge

nv
al

ue
s

g
1,γ
*

g
2,γ
*

g
3,γ
*

g
4,γ
*

g
5,γ
*

Fig. 3.3. For k = 1 : 6, the eigenvalues λk of the elliptical domain Eε as a function of ε2. Also
plotted are the optimal values gk,γ for k = 1 : 5 and γ ∈ [0, 1]. See section 3.2.

Lipschitz continuous, and concave and that the minimizing set ε�k,γ is upper
hemicontinuous. From Figure 3.4, we observe that the minimum g�k,γ is a
piecewise smooth function of γ.

3. For fixed k ∈ N, if the optimal value g�k,γ is constant on the interval [1−δ, 1] for
some δ > 0, then λk+1(Eε�k,1

) = λk(Eε�k,1
), i.e., the multiplicity of λk+1(Eε�k,1

)
is greater than one. This is observed for k = 2 : 4 but not k = 5.

4. Computational methods. In this section, we introduce a numerical ap-
proach for finding a locally optimal domain Ω� for an unconstrained shape optimiza-
tion problem of the general form

(4.1) min
Ω⊂Rd

J(|Ω|,Λ(Ω)),

where Λ(Ω) = {λk(Ω)}∞k=1 is the set of Laplace–Dirichlet eigenvalues for the domain
Ω. The optimization algorithm begins with an initial guess for the shape which is
iteratively morphed into the optimal shape. The boundary of Ω is represented using
the level set method. At each iteration, the eigenpairs of Ω are computed along with
the velocity field V, defined on ∂Ω, such that δJ(Ω)·V is minimal. This “velocity field
of steepest descent” is continuously extended to a neighborhood of ∂Ω. The boundary
∂Ω is then evolved in the direction ofV for a distance determined by an Armijo–Wolfe
line search. The process is iterated until a domain satisfying convergence criterion is
attained. In what follows, we describe the eigenvalue computation and our level-set-
based shape optimization approach.

Eigenvalue solver (forward problem). There are several available methods
for solving eigenvalues problems on general domains, including the finite difference
[33], finite element [29, 7], boundary integral [12], method of particular solutions
[22, 6, 13, 40], and meshless methods [3]. In this paper we use the finite element
method [33, 12, 29, 7].

Given a set of points on the boundary, we generate a mesh and construct the mass
and stiffness matrices using linear elements. In this work, we use a triangular mesh
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Fig. 3.4. The optimal values g�k,γ = g(ε�k,γ) for k = 1 : 5 and γ ∈ [0, 1] as defined in (3.3) are

plotted in blue. For each point indicated with an asterisk, the corresponding optimizing ellipse is
also presented. See Figure 3.3 and section 3.2.

so that the elements linearly approximate the domain boundary. The resulting linear
algebraic eigenvalue problem is solved using the Arnoldi algorithm applied to a shifted
and inverted matrix [34]. The obtained eigenvalues are second-order approximations
of the true eigenvalues. The generated mesh is chosen to be fine enough such that the
eigenvalues have four digits of accuracy.

Domain representation and evolution. Recent surveys of the application
of level set methods in optimal design problems are given in [10, 11] and a general
reference for the level set method can be found in [39].

The level set method represents a domain Ω(t) via a function φ(x, t) : Rd×R+ →
R, by

Ω(t) =
{
x ∈ R

d : φ(x, t) < 0
}
.
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Table 3

Values of f�
k,γ as defined in (3.2) (top), g�k,γ as defined in (3.3) (middle), and C�

k,γ as defined

in (5.1) (bottom) for k = 1 : 5 and γ = 0 : .1 : 1. The optimizers are plotted in Figures 3.2, 3.4, and
5.4. See section 3.1, section 3.2, and section 5.

γ\k 1 2 3 4 5
0 19.74 39.48 49.35 70.51 81.55
0.1 22.51 41.87 52.31 72.33 85.37
0.2 24.97 44.14 55.27 74.14 89.19
0.3 27.21 46.29 58.23 75.95 93.01
0.4 29.28 48.35 61.19 77.76 96.84
0.5 31.21 49.35 64.15 79.57 98.70
0.6 33.03 49.35 67.11 80.91 98.70
0.7 34.75 49.35 70.07 81.51 98.70
0.8 36.40 49.35 70.51 81.55 98.70
0.9 37.97 49.35 70.51 81.55 98.70
1.0 39.48 49.35 70.51 81.55 98.70

γ\k 1 2 3 4 5

0 18.17 = πj20,1 39.32 46.12 = πj21,1 65.74 82.86 = πj22,1
0.1 20.83 41.77 49.80 68.52 84.15
0.2 23.28 43.80 53.47 71.29 85.43
0.3 25.57 45.11 57.15 74.06 86.72
0.4 27.74 45.87 60.82 76.81 88.01
0.5 29.83 46.12 64.05 79.09 89.29
0.6 31.83 46.12 65.38 80.82 90.58
0.7 33.78 46.12 65.74 82.01 91.87
0.8 35.67 46.12 65.74 82.69 93.15
0.9 37.51 46.12 65.74 82.86 94.44
1.0 39.32 46.12 = πj21,1 65.74 82.86 = πj22,1 95.73 = πj20,2

γ\k 1 2 3 4 5

0 18.17 = πj20,1 36.34 = 2πj20,1 46.12 = πj21,1 64.29 78.19

0.1 20.83 39.43 49.70 68.36 82.58
0.2 23.27 43.64 53.08 71.13 85.43
0.3 25.53 45.08 56.31 73.36 86.72
0.4 27.64 45.87 59.41 75.08 88.01
0.5 29.60 46.12 62.34 76.42 88.52
0.6 31.42 46.12 64.29 77.56 88.52
0.7 33.08 46.12 64.29 78.18 88.52
0.8 34.56 46.12 64.29 78.19 88.52
0.9 35.75 46.12 64.29 78.19 88.52
1.0 36.34 = 2πj20,1 46.12 = πj21,1 64.29 78.19 88.52

The outward unit normal n̂ of the boundary ∂Ω = φ−1(0) can be expressed in terms
of the level set function as follows:

n̂ =
∇φ
|∇φ| .

A deformation of the domain Ω(t) can be expressed as the evolution of its level set
function φ(·, t) by the Hamilton–Jacobi equation

(4.2) φt + Vn(x)|∇φ| = 0,

where Vn(x) is the speed of the boundary deformation. In the present work, the
boundary deformation speed is also dependent on the Laplace–Dirichlet eigenfunctions
of the domain.

In the solution of shape optimization problem (4.1), we seek to choose a bound-
ary deformation speed, Vn(x), as to reduce the value of the objective function. For
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objective functions of the form J = J(|Ω|,Λ(Ω)), the variation of J with respect to
the perturbation of the boundary by a velocity field V is given in Proposition 2 and
may be expressed as a linear functional

δJ(Ω) ·V =
〈 δJ

δVn
, Vn

〉
∂Ω
,

where Vn = (V · n̂). Thus, to first order, the boundary deformation speed Vn(x)
which most rapidly decreases the objective function value agrees with − δJ

δVn
on the

boundary, i.e.,

Vn(x)
∣∣∣
∂Ω

= − δJ

δVn
.

To advance the level set function φ (and hence the domain boundary ∂Ω), we must
extend the boundary deformation speed to a neighborhood of ∂Ω. Our method of
extension differs inside and outside of the domain Ω.

1. The linear form δJ
δVn

as stated in Proposition 2 is dependent on the magnitude
of the eigenfunction gradients, which can also be evaluated on the interior of
Ω. We extend Vn(x) to the interior of Ω by simply evaluating these quantities
there.

2. On the exterior of Ω, we extend Vn(x) using the velocity extension method
[39], which assigns to each point x the value Vn(x0), where x0 ∈ ∂Ω is the
point closest to x. Thus, for a convex domain Ω, the velocity is constant
along rays normal to ∂Ω.

To compute δJ
δVn

, we follow the optimize-then-discretize approach of evaluating the

analytically computed variation δJ
δVn

using discrete counterparts. For this boundary
deformation speed Vn(x), the Hamilton–Jacobi equation (4.2) is solved using a third-
order accurate ENO scheme. If the level set function becomes either too flat or steep,
we reinitialize the level set function to a signed distance function to the boundary
∂Ω, again using a third-order accurate ENO scheme evolving in artificial time [39,
pp. 66–67].

Once a deformation speed Vn(x) has been chosen, the level set is evolved according
to the Hamilton–Jacobi equation (4.2) for a time t which satisfies the Armijo–Wolfe
conditions which guarantees a reduction in the objective function value and slope [38].
The process is continued until convergence criteria are met.

In the level set representation of the domain Ω, the boundary ∂Ω = φ−1(0) is only
defined implicitly. At each iteration, points on the boundary may be approximated
from the local representation of φ(x) on the mesh. We use the second-order approxi-
mation of the boundary as described in [14]. Note that only the quadratic polynomial
for each cell interface must be constructed; it is not necessary to construct the bicubic
polynomial on each cell.

5. Convex combinations of sequential Laplace–Dirichlet eigenvalues. In
this section, we apply the computational method developed in section 4 to study the
convex combination of sequential Laplace–Dirichlet eigenvalues. As in (2.4), we define
for fixed k ∈ N and γ ∈ [0, 1], the γ-parameterized shape optimization problem
(5.1)
Ω�k,γ = argmin

Ω
Ck,γ(Ω) := (1−γ) |Ω|λk(Ω)+γ |Ω|λk+1(Ω) and C�k,γ = Ck,γ(Ω

�
k,γ).

Using Proposition 3, we choose the boundary deformation speed for this objective
function to be

(5.2) C(x)|∂Ω = |Ω| ((1− γ) |∂nψk|2 + γ |∂nψk+1|2
)− ((1− γ)λk + γλk+1) ,
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Fig. 5.1. The evolution of the domain represented by a level set function for the optimization
of C1,0.9. The shapes for the 0th, 2nd, 4th, and 19th iterations are shown. See section 5.

where ‖ψk‖L2(Ω) = ‖ψk+1‖L2(Ω) = 1. The algorithm starts with an initial guess of
the domain represented by a level set function, φ(x), on a 64 × 64 rectangular grid.
To create a mesh for the finite element computation of the eigenvalues, points on the
zero level set contour are approximately found using a second-order approximation of
the boundary [14]. The mesh is created by the built-in MATLAB function “initmesh”
which uses a Delaunay triangulation algorithm with default parameters, and maxi-
mum edge size is chosen as 0.5 times the rectangular grid size. In this manner, the
mesh size is allowed to change as the shape evolves toward the optimizer. The fi-
nite element discretization of (2.1) for a given shape Ω is solved to obtain eigenpairs

{λj , ψj}k+1
j=1 . The deformation speed (5.2) is then calculated on the triangulated mesh

of Ω. We interpolate the deformation speed to the rectangular grid using a linear
interpolation and extend it to the exterior of Ω using the velocity extension method.
The level set function is then advected by this deformation speed using a linesearch
algorithm, allowing for large step sizes. This process is repeated until the difference
of objective function values at subsequent iterations is less than 10−2.

We first demonstrate the flexibility of the level set approach to topological changes
in the domain. In Figure 5.1, we optimize Ck,γ for k = 1 and γ = 0.9 with the initial
guess given by two disjoint balls, represented by the zero level set of function

φ(x, y) = min
{√

(x− 0.5)2 + (y − 0.5)2 − 0.2,
√
x2 + y2 − 0.4

}
.

During the optimization process, the small ball diminishes and finally disappears while
the larger ball grows and deforms into the optimal shape, which looks like two slightly
overlapping balls. The domains for the 0th, 2nd, 4th, and 19th iterations are given
in Figure 5.1. Since the topology of the optimal shape is unknown in advance, it is
advantageous to use the level set method, which automatically handles changes in the
topology.

Furthermore, in Figure 5.2, we optimize Ck,γ for k = 1 and γ = 1 using for an
initial guess the union of two slightly overlapping balls, represented as the zero level
set of the function

φ(x, y) = min
{√

(x− 0.2)2 + (y − 0.2)2 − 0.32,
√
(x+ 0.2)2 + (y + 0.2)2 − 0.32

}
.

During the optimization iterates, the shape deforms into two disconnected balls of
equal size. The domains for the initial, first, and second iterations are given in Fig-
ure 5.2. By the second iteration, the domain has already converged to the analytically
known optimal shape.
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Fig. 5.2. The evolution of the shape represented by a level set function during the optimization
of C1,1. The shape at the 0th, 1st, and 2nd iterations are shown. See section 5.
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Fig. 5.3. The optimal shapes for C∗
1,γ for γ = 0.9 : 0.02 : 1. See section 5.

Another advantage of the level set method is the generality of domains which
may be represented. For a Fourier representation of the boundary, the domains which
may be represented are restricted to star-shaped domains with smooth boundary. In
Figure 5.3, we plot Ω�k,γ for γ ranging from 0.9 to 1 with increment 0.02. Our method
accurately captures the optimal shape as it becomes disconnected when γ ↑ 1.

Similar to other local methods, gradient-based level set methods may reach a local
minimum instead of a global minimum. However, due the flexibility of topological
changes, the level set approach is more robust in providing the global minimum than
other approaches.

We numerically solve (5.1) for k = 1 : 5 and γ = 0 : .1 : 1. The results are
summarized in Table 3 (bottom) and Figure 5.4. The results may be compared to
those in section 3, where the optimal values for restricted class of domains (rectangles
and ellipses) were investigated. We observe the following:

1. By Proposition 1, for each k ∈ N and γ ∈ [0, 1], the minimizer of Ck,γ(Ω) as
defined in (5.1) exists but is not necessarily unique. For example, for k = 3,
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Fig. 5.4. Plots of C�
k,γ (blue asterisks) and the numerical minimizers Ω�

k,γ for k = 1 : 5 and

γ = 0 : .1 : 1. See section 5 and Table 3.

there exists a γc ∈ [0.5, 0.6] such that there are two minimizers. At γ = γc
the minimizer is not lower hemicontinuous.

2. Proposition 1 shows that as a function of the parameter γ, the minimal objec-
tive function value C�k,γ is nondecreasing, Lipschitz continuous, and concave
and that the minimizing set Ω�k,γ is upper hemicontinuous.

3. For fixed k ∈ N, if the optimal value C�k,γ is constant on the interval [1−δ, 1] for
some δ > 0, then λk+1(Ω

�
k,1) = λk(Ω

�
k,1), i.e., the multiplicity of λk+1(Ω

�
k,1)

is greater than one. This is observed for k = 2 : 5.
4. For the values of k and γ considered, the minimizing domain has at least one

axis of symmetry. Note that this property fails for k = 13 and γ = 0 [3].
5. For k = 1 : 5 and γ = 1, our numerical results agree with [43, 3] and for
k = 1 : 5 and γ = 0.5, our numerical results agree with [2].
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6. The optimal values obtained for domains which can be represented by a level-
set function are at least as small as those obtained for rectangles and ellipses;
see Table 3. For several parameter values, the objective function values and
minimizers are similar. For example, for k = 5 and γ = 0.3, the optimal
shape is nearly a ball and for k = 3 and γ = 0.4, the optimal shape resembles
a square with rounded corners.

7. For k = 1, we numerically observe that the family of optimal solutions Ω�1,γ
for γ ∈ [0, 1] is a deformation between Ω�1,0 (= ball) and Ω�1,1 (= union of
two balls of equal size). It is known that Ω�1,γ is disconnected only for γ = 1
[49, 28], as illustrated in Figure 5.3. Furthermore, our numerical studies
support the conjecture that for γ ∈ [0, 1), Ω�1,γ has two axes of symmetry
and is simply connected (cf. [49] and [25, open problem 21]). The value γ for
which Ω�1,γ is no longer convex is γc ≈ 0.36.

8. Our numerical results support the conjecture that the disk minimizes Ck,γ
for k = 2 and γ = 1

2 [25, open problem 17]. We show below in Proposition 4
that the disk is a local minimizer for γ ∈ [ 12 , 1].

Proposition 4. The disk is a local minimizer of C2,γ(Ω) for γ ∈ [ 12 , 1].
Proof. Our proof is only a slight modification to the proof that the disk is a local

minimum of λ3(Ω) given in [49, Theorem 8.3], to which we refer the reader for details.
Consider the nearly circular domain Ωε = {(r, θ) : r < R(θ, ε), θ ∈ [0, 2π]}, where

R(θ, ε) := 1 + ε

∞∑
n=−∞

ane
ınθ + ε2

∞∑
n=−∞

bne
ınθ +O(ε3), an = a−n and bn = b−n.

Using the asymptotic formulas for |Ωε|λk(Ωε) given in [49, Appendix A], the following
holds. If a2 �= 0,

C2,γ(Ωε) = πj21,1 [1 + 2(2γ − 1)|ε||a2|] +O(ε2),

and if a2 = 0,

C2,γ(Ωε) = πj21,1 +Aε2 + (1− 2γ)Bε2 +O(ε3),

where B is a nonnegative constant, dependent on {an} and b2 and A is a nonnegative
constant, dependent on {an}, which vanishes only if an = 0 for all n. In both cases,
if γ ∈ [ 12 , 1], any perturbation of the disk increases C2,γ , showing that the disk is a
local minimum.

6. Discussion and further directions. We have presented a general method
for computing (local) minima of shape optimization problems where the objective
function is dependent on the Laplace–Dirichlet eigenvalues of the shape. The numer-
ical method utilizes the level-set method for describing the shape of the domain and
is thus suitable for studying shape optimization problems where the topology of the
minimizer is unknown.

The method is applied to the problem of minimizing the convex combination of
sequential eigenvalues, Ck,γ(Ω) = (1 − γ)λk(Ω) + γλk+1(Ω). It is known that for
some values of k, the number of connected components of the minimizer for this
parameterized objective function varies with the convex combination parameter, γ.
This feature makes this problem an excellent application for our method. We are
able to show that the minimal value of Ck,γ is a nondecreasing, Lipschitz continuous,
and concave function of γ and that the minimizing set is upper hemicontinuous in γ.
Numerically, we are able to reproduce several known results for appropriate parameter
values and also computationally address several open problems within the community.
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In particular, we observe that for k = 2, 3, 4, 5, if Ω� is the optimizer for γ = 1, then
Ω� is also an optimizer on an interval γ ∈ [1 − δ, 1] for some δ > 0 and that C�k,γ is
constant. Consequently, for these values of k and γ, the kth and k + 1th eigenvalues
of the minimizer are equal, i.e., λk(Ω

�
k,γ) = λk+1(Ω

�
k,γ). Our general results are also

compared to results obtained for rectangles and ellipses (see section 3).
There are several interesting extensions of this work. For the computation of

eigenvalues, we used a finite element method, which is robust but does not have the
accuracy of boundary integral or meshless methods. We view the merging of one of
these methods with the level set method for the representation of the domain as a
challenging but natural extension of this work. There are also several ways in which
our finite element implementation could be improved. For instance, at each iteration,
we use a rootfinding algorithm to find approximate points on the boundary and remesh
the domain. This could be improved by reusing mesh information from the previous
iterations. Finally, the methods developed here can be used to study a large number
of eigenvalue optimization problems. One particular extension would be to consider
convex combinations of three eigenvalues, such as studied in [28].

Acknowledgements. We thank Dorin Bucur and Antoine Henrot for useful
discussions.

REFERENCES

[1] V. Akcelik, G. Biros, O. Ghattas, D. Keyes, K. Ko, L.-Q. Lee, and E. G. Ng, Adjoint
methods for electromagnetic shape optimization of the low-loss cavity for the international
linear collider, J. Phys: Conference Series, 16 (2005), pp. 435–445.

[2] P. R. S. Antunes, Optimization of sums and quotients of Dirichlet-Laplacian eigenvalues,
Applied Math. Comput., 219 (2013), pp. 4239–4254.

[3] P. R. S. Antunes and P. Freitas, Numerical optimization of low eigenvalues of the Dirichlet
and Neumann Laplacians, J. Optim. Theory Appl., 154 (2012), pp. 235–257.

[4] M. S. Ashbaugh and R. D. Benguria, Isoperimetric inequalities for eigenvalues of the Lapla-
cian, Proc. Sympos. Pure Math., 76 (2007), pp. 105–139.

[5] M. S. Ashbaugh and R. Benguria, A sharp bound for the ratio of the first two eigenvalues
of Dirichlet Laplacians and extensions, Ann. of Math., 135 (1992), pp. 601–628.

[6] T. Betcke and L. Trefethen, Reviving the method of particular solutions, SIAM Rev., 47
(2005), pp. 469–491.

[7] D. Boffi, Finite element approximation of eigenvalue problems, Acta Numer., 19 (2010), pp. 1–
120.

[8] D. Bucur, Minimization of the k-th Eigenvalue of the Dirichlet Laplacian, Arch. Ration. Mech.
Anal., 206 (2012), pp. 1073–1083.

[9] D. Bucur and G. Buttazzo, Variational Methods in Shape Optimization Problems,
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